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The phenomenon of a neutron phase shift due to Laue transmission in a perfect

crystal blade is discussed. Quantitative measurements of this phase shift are

presented in the vicinity of the Bragg condition well in agreement with

numerical calculations. The phase shift shows a strong angular sensitivity and

might constitute an interesting opportunity for precision measurements of

fundamental quantities like the neutron–electron scattering length or gravita-

tional short-range interactions.

1. Introduction

Laue diffraction on a perfect crystal slab is the basis for

perfect crystal neutron interferometry as it coherently splits

the incoming neutron wave into a transmitted and a reflected

component. Both wavefunctions can be calculated by dyna-

mical diffraction theory. Here we want to focus on the phase of

the transmitted beam, which shows a very peculiar behavior,

different from an ordinary phase shifter described by the

index of refraction (Lemmel, 2007). We refer to this phase as

the ‘Laue phase’ rather than the ‘dynamical phase’ (Ioffe &

Vrana, 2003; Wietfeldt et al., 2006) as the latter might be

misleading in the sense of distinguishing dynamical from

topological phase shifts (Rauch & Werner, 2000). The Laue

phase is effective on a much larger angular range than the

Laue reflection itself. While the reflected amplitude is essen-

tially zero if the beam angle differs more than a few arc

seconds from the Bragg condition, the phase of the trans-

mitted beam (Laue phase) still shows a remarkable difference

from the index of refraction phase at angles some tenths of

degrees off the Bragg condition. First related measurements

on this feature have been presented in Graeff et al. (1978). The

motivation for such measurements has additionally grown due

to the fact that the Laue phase depends on the neutron–

electron scattering length (Wietfeldt et al., 2006; Ioffe &

Vrana, 2003). As a first step we focus on measuring the Laue

phase in principle and on developing suitable simulation

programs. In a next step the accuracy should be improved to

see if it is possible to extract fundamental quantities from a

phase measurement.

2. Theory

Laue diffraction for neutrons is well understood within the

theory of dynamical diffraction (Rauch & Werner, 2000;

Werner, 1980). Recently, new approximations smoothly

covering the transition range between the vicinity of the Bragg

condition and the case of a simple phase shifter have been

published (Lemmel, 2007); these are considered in the

following. A neutron wave incident on a perfect crystal slab of

thickness D with an angle � close to the Bragg angle �B is split

into a transmitted and a reflected beam (Fig. 1).

For our considerations the amplitude of the transmitted

beam is of interest:
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are used. �H ¼ ð2� cos �BÞ=ðkvHÞ denotes the Pendellösung

length and � is a measure of the mis-set angle �� ¼ �B � �:

� ¼ 2 sin �B sin �B � sinð�B � ��Þ
� �

=vH : ð2Þ

The coherent atomic scattering length (Sears, 1986)

batom ¼ bN � Z½1� f ðqÞ�bne ð3Þ

contains the nuclear (bN) and the neutron–electron (bne)

scattering length and the atomic form factor f ðqÞ. At q 6¼ 0 the

Debye–Waller factor W (Butt et al., 1988) leads to a further

correction,

batom ! batom expð�WÞ: ð4Þ

The amplitude factor [equation (1)] not only yields the

intensity of the transmitted beam but also the phase shift the



neutron wave experiences in Laue transmission. The phase

shift is given by the argument of the transmission factor,

’Laueð�Þ � arg½tð�Þ�; ð5Þ

and can be explicitly written as
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where ’Laueð0Þ ¼ �A0ð1þ "Þ plus a potential constant � from

the use of the arctangent according to equation (5). The

constant ’Laueð0Þ is omitted in the following plots and the

arctan function is continuously extended. A remarkable

structure appears at the poles of the tangent term when

AHð1þ �
2Þ

1=2
ð1þ "Þ ¼ ð2nþ 1Þ�=2 (Fig. 2). At these points

the otherwise steadily increasing phase function shows small

plateaus. These are related to the Pendellösung oscillations

(Shull, 1968; Shull & Oberteuffer, 1972) and appear exactly at

the minima of the transmitted intensity. In Fig. 3 the Laue

phase over a large scale of �� is shown.1

The Laue phase shows a strong dependence on � and

therefore on ��. It is interesting to note that the angular

dependence of the phase around the Bragg condition is to first

order linear with respect to ��,2

’Laueð��Þ ’ ’Laueð0Þ þ ��ð�D=dÞ þOð��3Þ; ð7Þ

solely depending on the ratio between the crystal thickness

and lattice-plane distance d. Hence the dependence on the

atomic scattering length cancels at the Bragg condition as in

the case far off, whereas it is the largest around the Darwin

width of the reflection. Moreover, there is a high sensitivity at

the positions of the Pendellösung plateaus (Fig. 2). The ratio

D=d yields a remarkable angular sensitivity of the phase shift

typically of the order 1� for �� ¼ 10�4 arcsec.

Equation (6) describes one single monochromatic plane

wave with a certain mis-set angle ��. In a realistic experiment

one has to deal with a certain angle and wavelength distri-

bution, where the latter is of minor importance. This has to be

taken into account for a proper calculation of the phase shift.

3. Measurements and numerical calculations

A first approach for a measurement of the Laue phase could

consist of a rotation of a perfect crystal slab around the Bragg

condition in an interferometer. Related experiments have

been performed with neutrons (Graeff et al., 1978) and X-rays

(Hirano & Momose, 1996). There has also been a similar

experiment for the case of a perfect crystal slab in Bragg

geometry (Rauch, 1989). The experiments demonstrated

qualitatively the increase of the phase shift as the Bragg

condition is approached. However, close to the Bragg condi-

tion no data could be acquired due to a rapid destruction of

the interference pattern, described by the visibility of the

interferometer. The visibility is measured by scanning an

auxiliary phase shifter in the interferometer and fitting the

intensity of the O beam (Fig. 4). Usually we consider only the

intensity integrated over the beam cross section. As is obvious

from the cited experiments, maintaining the visibility close to

the Bragg condition is one of the main challenges. There are

mainly three effects influencing the visibility:

(1) A perfect crystal close to the Bragg condition leads to a

fanning of the beam within the Borrmann triangle, with a
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Figure 2
Laue phase for the silicon (220) reflection at �B ¼ 45� (� = 2.72 Å) for
two crystal thicknesses D. A fine structure depending on the ratio
between crystal thickness and the Pendellösung length can be observed.

Figure 3
Plot of the Laue phase as a function of the deviation �� from the Bragg
angle (�B ¼ 45�) for the silicon (220) (� = 2.72 Å) and (440) (� = 1.36 Å)
reflections. The thickness of the Laue crystal is D = 3 mm.

Figure 1
Sketch of a beam splitter in symmetrical Laue geometry. The transmission
and reflection factors are denoted by r and t.

1 For large �� the Laue phase asymptotically approaches the phase given by
the index of refraction. In Fig. 3 it seems that each curve approaches different
asymptotes for positive and negative ��. However, it can be shown that these
asymptotes are separated exactly by a multiple of 2�, meaning that they are
physically identical (Lemmel, 2007). One could also plot the phase modulo 2�
or introduce one big jump e.g. at �� ¼ 0. We prefer the given representation to
emphasize the continuity of the phase function.
2 This is only a good approximation as long as no Pendellösung structure is
very close to �� ¼ 0.



crucial influence on the focusing conditions in an inter-

ferometer.

(2) The strong angular dependence leads to a distinct phase

distribution within the angular distribution (beam divergence)

of the incoming beam, significantly reducing the visibility. This

is similar to the influence of the wavelength distribution in the

case of pure phase shifters. Here the coherence properties are

strongly dominated by the pure geometrical angular depen-

dence ��. Moreover, the phase shift averaged over the angular

distribution is smaller than the phase shift for one single plane

wave [equation (6)].

(3) Inserting and/or rotating crystal lamellas inside a

neutron interferometer modifies the beam-path intensities.

Asymmetric beam-path intensities reduce the visibility.

Hence one has to regard the whole system of beam, sample

lamellas and interferometer in order to analyze defocusing

effects and intensity changes in the two relevant beam paths.

We have developed a simulation program (Lemmel, 2007)

which allows one to compose arbitrary interferometer

geometries. The incident beam is specified by the Bragg angle

and the horizontal angular width (beam divergence) of the

incoming beam. Lamellas can be rotated individually. Further

crystal parameters like scattering lengths and type of Laue

reflection can be chosen. The calculations are mono-energetic,

but at the present stage this is not a severe limitation as

calculations for slightly different wavelengths yield similar

results. The divergent beam is calculated by a coherent

superposition of stationary mono-energetic plane waves and a

corresponding angle distribution,

gðkÞ ¼ �ðk� k0Þg�ð��Þ
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R
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R
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As an angular distribution a square function g� ¼

�ð�� þ ��Þ ��ð�� � ��Þ, where �ðxÞ is the Heaviside step

function, with width 2�� and a Gaussian can be chosen,

yielding similar results. The exact reflection curve of the

perfect silicon crystal monochromator should be implemented

for precision experiments. The transmitted and reflected

wavefunctions after one single blade then read

 tðrÞ ¼ ðk0=2�Þ
R

d�� g�ð��Þtð��Þ exp½ik0ðr� r0Þ�;

 rðrÞ ¼ ðk0=2�Þ
R
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where kH is the wavevector in the reflected direction and rð��Þ
is the reflected amplitude analogous to equation (1). In the

program the angular integration is substituted by the para-

meter � [equation (2)]. The exit beams (O, H) of the inter-

ferometer can be calculated by adding the contributions from

the two beam paths after the last lamella and integrating over

the beam cross section. Visibility and phase shifts are deter-

mined by applying auxiliary phase shifts between the two

beam paths. Then the calculated intensities of the exit beams

show sinusoidal oscillations and a sine fit yields the phase and

visibility.

Applying this approach one finds that in the limit of large

beam divergences the slope of the plane-wave result [equation

(6)] is reduced by a factor of approximately three by phase

averaging. On the other hand, for beam divergences �� much

smaller than the reflection width the calculated phase shift

approaches the plane-wave result.

In our measurement a large six-plate interferometer

(Zawisky et al., 2002) has been used, where the middle

lamellas act as perfect crystal samples. In this configuration,

the focusing condition of the interferometer is guaranteed.

Instead of rotating the lamellas (Wietfeldt et al., 2006) the

beam can be deflected in front of them using prisms (Ioffe &

Vrana, 2003) as shown in Fig. 4. Here the phase shift obtained

via beam deflection relative to L2 is measured relative to

lamella L1 in the exact Bragg condition. The relevant devia-

tion angle �� in the scattering plane can be provided by

rotation of the prisms around the incident beam direction by

an angle � (Ioffe & Vrana, 2003). In this case the effective

angular deviation is given by �� ¼ � sin �, where � is the total

beam deflection by the prism.

The neutron interferometer has several remarkable

features. It is actually the largest crystal interferometer (L =

23.5 cm) and its lattice planes are precisely oriented perpen-

dicular to the lamella surfaces (asymmetry 13:500 on average)

(Zawisky et al., 2009). This justifies the use of dynamical

diffraction theory in symmetrical Laue geometry. In fact, for

the chosen �B ¼ 45� geometry not only the (220) but also two

ð�2220Þ reflections and the (040) reflection would be simulta-

neously excited (Hart, 1975; Hart & Lang, 1961). Nevertheless

these reflections are in the dispersive arrangement with

respect to the perfect crystal monochromator. The contribu-

tion in the present case is thereby negligible. In the case of

precision measurements one should avoid these reflections by

moving the setup sufficiently away from �B ¼ 45�.

The experiments were performed at the interferometer

setup S18 at the ILL in Grenoble using the configuration

shown in Fig. 4.

3.1. Visibility

Experiments at a Bragg angle of 45� were carried out for the

(220) reflection (� = 2.72 Å) and the (440) reflection (� =

1.36 Å). Figs. 5 and 6 compare the measured visibility for these
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Figure 4
Perfect crystal monochromator and six-plate interferometer with beam
deflection in front of lamella L2 while L1 [lamella thickness D =
2.959 (1) mm] remains at the exact Bragg condition. The beam path
inside the lamellas and prisms is simplified.



two reflections with the calculated values. A rather good

agreement between the predicted and measured visibility

reduction was obtained. However, for both reflections a small

shift of the visibility maximum relative to the expected zero

position of the prisms was detected. We have analyzed several

effects such as the non-ideal interferometer geometry

(geometric errors up to 4 mm, but L1 and L2 have identical

thickness within 1 mm accuracy) and the asymmetry of the

lattice planes stated above, which however do not explain this

effect. Recent analysis has shown that the Coriolis force from

the Earth’s rotation and the gravitational force acting along

the beam trajectories explains most of this shift. As we found

the same shift in our phase measurements the calculated

visibility values have been adjusted accordingly.

3.2. Phase shift

Figs. 7 and 8 compare the measured phase shift with

calculated values. The phase shifts show a linear behavior

close to the Bragg condition but a nonlinear behavior further

away. This is due to the Pendellösung structures in equation

(6). The data for the (220) measurement show best agreement

with the calculation if one assumes a beam divergence of

�� ¼ 1:2500. This corresponds approximately to the full

reflection width of our perfect crystal monochromator.

However, the (440) measurement shows a larger discrepancy

between the best fit (�� ¼ 0:500) and the (440) reflection width

of the monochromator (�� ’ 0:2500). Here the fitted beam

divergence is already in the region where a larger divergence

would not significantly change the phase shift. The deviation is

probably due to the difficult alignment between the lattice

planes of the monochromator and the interferometer. A slight

misalignment shows an equivalent effect to an enlarged beam

divergence. This alignment and stability is more challenging

for higher-order reflections, due to the reduced reflection

width of the monochromator. Hence a better resolution of this

alignment axis and/or the use of a mosaic crystal as mono-

chromator with much larger beam divergence should lead to

an improvement.

4. Discussion and outlook

Quantitative measurements of the phase shift due to Laue

transmission have been performed in the vicinity of the Bragg

condition and a comparison with accompanying numerical

calculations has been presented. Good agreement concerning

the detailed structure of the phase function could also be

achieved. Moreover, despite the phase averaging a remark-

able angular sensitivity of the phase shift remains. To obtain

larger phase shifts, stronger deflecting prisms and/or thicker

lamellas can be used. To overcome the visibility reduction at
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Figure 5
Measured visibility reduction for the (220) reflection compared with the
calculated values, assuming an effective beam divergence of �� ¼ 1:2500.
The measured data are normalized to the maximum of a Gaussian fit. The
calculated curve is shifted according to the measured offset.

Figure 6
The measured visibility for the (440) reflection compared with the
calculated visibility (�� ¼ 0:500). The measured data are normalized to the
maximum of a Gaussian fit. The calculated curve is shifted according to
the measured offset.

Figure 8
The measured phase shift for the (440) reflection compared with the best
fitting beam divergence.

Figure 7
The measured phase shift for the (220) reflection compared with the best
fitting beam divergence and another calculation (� ¼ 0:3500) that is
already close to the phase shift of a single plane wave.



large beam deflections one can deflect the beams in front of

both sample lamellas L1 and L2 but with slightly different

deviations (�� versus �� þ �). The difference � has to be small

enough that high visibility is ensured. By this method in

principle the slope of the Laue phase could be measured.

Preliminary measurements have already shown that the visi-

bility is maintained by this approach. A continuation of

precise measurements related to the Laue phase is of general

interest as it includes the neutron–electron scattering length

and the Debye–Waller factor. Neutron interferometry could

establish an independent method for the extraction of these

fundamental neutron and crystal quantities. Finally, phase

measurements around the Bragg condition have recently

gained interest in the context of non-Newtonian gravity

theories (Greene & Gudkov, 2007). In particular, the use of

higher-order reflections as presented in this work is essential

for these kinds of experiments. The high angular sensitivity of

the phase shift could be used for the accurate measurement of

beam deflections or crystal rotation. In this respect similar

measurements could be interesting in the X-ray case.

Furthermore, studying the related phase shifts also gives

valuable information on the sensitivity of split-crystal neutron

interferometers which have hitherto only been realized for

X-rays (Bonse & te Kaat, 1968).
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